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ABSTRACT

Approximate thermodynamic state relations for multicomponent atomic and molecular gas

mixtures are often constructed by artificially partitioning the mixture into its constituent materials,

and requiring the separated materials to be in temperature and pressure equilibrium. A numerical

algorithm for enforcing this equilibration and computing the resulting approximate state relations

in single-temperature mixtures was described in Phys. Fluids 21, 055109 (2009). Here we gener-

alize that algorithm to the case of partially ionized gas mixtures in which the free electrons and

heavy particles have different temperatures.
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I. INTRODUCTION

Multicomponent hydrodynamics calculations require thermodynamic state relations for

material mixtures. Unfortunately, it is rarely feasible to construct accurate state relations for multi-

component atomic mixtures of interacting materials. In practice, the state relations of the mixture

must perforce be approximated in terms of those of the pure materials of which it is comprised.

The usual approach [1,2] is to regard the mixture as being artificially partitioned or separated

into its constituent components or materials, so that each species or material k occupies its own

compartment or subvolume, which contains some initially undetermined portions of the specific

volume and internal energies of the mixture. Different ways of apportioning or distributing the

mixture volume and energy among its constituents lead to different approximations. The usual and

customary procedure has been to apportion the volume and energy in such a way that the individ-

ual materials are in temperature and pressure equilibrium with one another, and to interpret the

resulting equilibrated values thereof as the temperature and pressure of the mixture. A practical

numerical algorithm for enforcing this equilibration and computing the resulting approximate state

relations was described in [2].

The procedure just described provides a tractable and intuitively appealing approximation

to the true state relations of the mixture. Unfortunately, that approximation is uncontrolled; i.e., its

accuracy cannot readily be quantified or systematically improved. However, its appeal and credi-

bility are considerably enhanced by the fact that it correctly reproduces the exact state relations in

mixtures of neutral (non-ionized) ideal gases [1]. This highly desirable property is unfortunately

lost in partially ionized gases, but it can easily be restored, at least in principle, by equilibrating

the free electron number densities or chemical potentials instead of pressures [1]. In practice, how-

ever, this remedy entails significant complications. The free electron number densities or chemical
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potentials are not always available, and even when they are their use requires special logic to

accommodate both neutral and ionized materials and make a smooth transition between them as

the temperature and degree of ionization vary. Moreover, the urgency of implementing this more

complicated procedure is reduced by the fact that there are many situations in which pressure equi-

libration would be expected to produce very similar results. Such situations include those in which

the temperature is either sufficiently low that the number density and partial pressure of the free

electrons are negligible, or sufficiently high that the free electrons produced by multiple ioniza-

tion greatly outnumber the heavy particles (ions and neutral atoms). The total pressure of each

material is then dominated by the partial pressure of its free electrons, so that equilibrating the

former is tantamount to equilibrating the latter, which in turn is equivalent, at least in ideal gases,

to equilibrating the free electron number densities or chemical potentials. Conversely, equilibrat-

ing pressure, rather than free electron number density or chemical potential, may be less accurate

in situations where the number densities of the free electrons and heavy particles are comparable,

such as significantly ionized mixtures of the lighter elements.

Thus, although equilibrating free electron number densities or chemical potentials in par-

tially ionized gas mixtures is theoretically preferable to equilibrating pressures [1], it is unfortu-

nately less convenient, the required information is not always available, and in many situations the

resulting increased accuracy seems likely to be relatively minor. For these reasons, the common

procedure of equilibrating temperatures and pressures remains of practical interest even in partially

ionized gases, where it may be employed as a simple expedient in problems where the equilibration

of electron number densities or chemical potentials is either infeasible or seems unlikely to pro-

duce significantly different results. For this purpose, the algorithm described in [2] can be applied

as it stands to single-temperature plasma mixtures, but it requires generalization to deal with two-
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temperature plasmas, in which the free electrons and heavy particles have different temperatures.

The purpose of this paper is to present that generalization, which is relatively straightforward but

somewhat tedious.

Two-temperature plasmas correspondingly possess two internal energies as well, namely

the specific internal energies Ei and Ee of the heavy particles and electrons, respectively, both of

which we define as energies per unit total mass of the mixture, not per unit mass of the heavy

particles or electrons. It should be noted that Ei is not purely thermal but also includes the ”cold

energy” (i.e., chemical/ionization energy or heat of formation), so in general it does not vanish

at zero temperature. In most hydrodynamic calculations the internal energies are determined by

energy transport equations, so they constitute independent thermodynamic variables which may

be regarded as known quantities for present purposes. In practice, however, one normally solves

a transport equation for the total specific internal energy E ≡ Ei + Ee rather than Ei, because

E satisfies a simpler equation than Ei does [3]. One then simply obtains Ei as Ei = E − Ee.

The other independent thermodynamic variables obtained by solving transport equations, which

may therefore also be regarded as known quantities, are the mass density ρ of the mixture, or

equivalently its specific volume ξ = 1/ρ, and the mass fractions Yk of its constituent species

or components, which of course must satisfy the constraint
∑

k Yk = 1. The artificial partitioning

procedure described above then requires that the quantities ξ, Ei, and Ee be apportioned among the

different materials k in such a way that their pressures and temperatures are equal. In the present

context, of course, the heavy particles and electrons have different temperatures which must be

separately and independently equilibrated.

The equations that must be solved to implement the procedure described above are of two

types: constraint conditions to ensure that the specific volumes and internal energies of the mate-
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rials are consistent with the known specific volume and energies of the mixture, and equilibration

conditions which ensure pressure and temperature equality among the different materials. These

conditions are summarized in Sects. II and III respectively. Together they constitute a closed

nonlinear algebraic equation system, which must in general be solved by iterative methods. The

Newtonian iteration scheme we use for this purpose is a natural generalization of that described in

[2], and is presented, along with a test problem, in Sect. IV. Thermodynamic relations needed to

evaluate various partial derivatives for the individual materials and the mixture as a whole in terms

of known quantities are given in Sects. V and VI, respectively. The sound speed in the mixture is

derived in Sect. VII. The paper is briefly summarized in Sect. VIII.

II. CONSTRAINT CONDITIONS

For the most part we shall use the same notation as Ref. [2], the main exception being

that specific internal energies are denoted by the symbol E rather than e so that e is available for

use as a subscript to refer to the electrons. The specific volume of material k in the artificially

partitioned mixture is denoted by ξk, and is defined as the volume occupied by material k per unit

mass of material k. Thus ρk ≡ 1/ξk is the mass density of material k within its subvolume. The

mass of material k per unit total volume is Ykρ = Yk/ξ so the volume fraction of material k in

the artificially partitioned mixture is vk = ξkYk/ξ. These volume fractions must of course sum to

unity, so that the quantities ξk must satisfy the constraint

N∑
k=1

Ykξk = ξ (1)

where N is the number of materials in the mixture.
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The specific internal energies of the heavy particles and electrons of material k within its

subvolume are denoted by Eik and Eek respectively, both of which are defined per unit total mass

of material k. The corresponding internal energies of the heavy particles and electrons of material

k per unit mass of the mixture are then simply YkEik and YkEek, respectively. These quantities

must clearly sum to Ei and Ee respectively, so that Eik and Eek must satisfy the constraints

N∑
k=1

YkEik = Ei (2)

N∑
k=1

YkEek = Ee (3)

III. EQUILIBRATION CONDITIONS

Equations of state for each pure material k are required as input to the procedure for de-

termining approximate state relations for the mixture. The basic state relations needed to proceed

are the total pressure pk and the temperatures Tik and Tek of the heavy particles and free electrons,

respectively, as functions of the independent thermodynamic variables (ξk, Eik, Eek), and the cor-

responding inverse relations which express ξk, Eik, and Eek as functions of (pk, Tik, Tek). As will

be seen below, the present development is based on the latter relations, which must be constructed

by combining the state relations for material k in whatever form they may be available. Many if

not most state routines or packages employ temperatures rather than energies as independent ther-

modynamic variables, in which case pk, Eik, and Eek are provided as functions of (ξk, Tik, Tek), or

equivalently (ρk, Tik, Tek). Normally Eik is a function of (ξk, Tik) alone and is independent of Tek,

while Eek is a function of (ξk, Tek) alone independently of Tik. However, pk contains contributions

from both heavy particles and electrons, and is consequently a function of (ξk, Tik, Tek). The latter

contributions are usually assumed to be additive, so that pk = pik + pek, where pik and pek are the
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heavy-particle and electron pressures, respectively. Normally pik is a function of (ξk, Tik) alone

independently of Tek, while pek is a function of (ξk, Tek) alone independently of Tik. The functional

relation pk(ξk, Tik, Tek) can in principle be inverted to obtain ξk as a function of (pk, Tik, Tek), and

the resulting expression can then be substituted into Eik(ξk, Tik) and Eek(ξk, Tek) to obtain the

functions Eik(pk, Tik, Tek) and Eek(pk, Tik, Tek). Similarly, the functional relations pik(ξk, Tik) and

pek(ξk, Tek) can in principle be inverted to obtain ξk as a function of either (pik, Tik) or (pek, Tek),

and those expressions can be substituted into Eik(ξk, Tik) and Eek(ξk, Tek) to obtain the functions

Eik(pik, Tik) and Eek(pek, Tek).

In accordance with the discussion of Sect. I, the equilibration conditions that we impose to

implicitly determine the quantities ξk, Eik, and Eek are as follows:

pk(ξk, Ti, Te) = p (4)

Tik(ξk, Eik) = Ti (5)

Tek(ξk, Eek) = Te (6)

Equations (1)–(6) constitute a system of 3N + 3 equations in the 3N + 3 unknown quantities ξk,

Eik, Eek, p, Ti, and Te. This system is highly nonlinear and must in general be solved by iterative

methods. A suitable iteration scheme for this purpose is described in the next section.

IV. NEWTONIAN ITERATION SCHEME

Let η be the iteration index, which will be displayed as a superscript. Thus the approximate

value of any quantity q after iteration η but before iteration η + 1 is denoted by qη. The iteration

scheme defines how the quantities ξk, Eik, Eek, p, Ti, and Te are advanced from iteration η to
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iteration η + 1. This will be done by means of linearized approximations to Eqs. (1)–(6). The

constraint Eqs. (1)–(3) are already linear, so they become

N∑
k=1

Ykξ
η+1
k = ξ (7)

N∑
k=1

YkE
η+1
ik = Ei (8)

N∑
k=1

YkE
η+1
ek = Ee (9)

The remainder of the scheme is defined by writing linearized approximations for the changes in

ξk, Eik, and Eek from iteration η to iteration η + 1 required to produce values of pη+1
k , T η+1

ik , and

T η+1
ek that satisfy Eqs. (4)–(6):

ξη+1
k − ξηk =

(
∂ξk
∂pk

)(
pη+1 − pηk

)
+

(
∂ξk
∂Tik

)(
T η+1
i − T η

ik

)
+

(
∂ξk
∂Tek

)(
T η+1
e − T η

ek

)
(10)

Eη+1
ik − Eη

ik =

(
∂Eik

∂pk

)(
pη+1 − pηk

)
+

(
∂Eik

∂Tik

)(
T η+1
i − T η

ik

)
+

(
∂Eik

∂Tek

)(
T η+1
e − T η

ek

)
(11)

Eη+1
ek − Eη

ek =

(
∂Eek

∂pk

)(
pη+1 − pηk

)
+

(
∂Eek

∂Tik

)(
T η+1
i − T η

ik

)
+

(
∂Eek

∂Tek

)(
T η+1
e − T η

ek

)
(12)

where it is understood that partial derivatives with respect to any of the variables (pk, Tik, Tek)

are taken with the other two held constant, and are evaluated at iteration η. Since all quantities

are presumed known at the previous iteration η, Eqs. (7)–(12) constitute a determinate system of

3N + 3 equations in the 3N + 3 unknown quantities ξη+1
k , Eη+1

ik , Eη+1
ek , pη+1, T η+1

i , and T η+1
e .

It is apparent by inspection that if the iteration converges as η → ∞, it produces a solution of

Eqs. (1)–(6).
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Substituting Eqs. (10)–(12) into Eqs. (7)–(9), we obtain

Appp
η+1 + ApiT

η+1
i + ApeT

η+1
e = Bp (13)

Aipp
η+1 + AiiT

η+1
i + AieT

η+1
e = Bi (14)

Aepp
η+1 + AeiT

η+1
i + AeeT

η+1
e = Be (15)

where

App =
∑
k

Yk

(
∂ξk
∂pk

)
; Api =

∑
k

Yk

(
∂ξk
∂Tik

)
; Ape =

∑
k

Yk

(
∂ξk
∂Tek

)
(16)

Aip =
∑
k

Yk

(
∂Eik

∂pk

)
; Aii =

∑
k

Yk

(
∂Eik

∂Tik

)
; Aie =

∑
k

Yk

(
∂Eik

∂Tek

)
(17)

Aep =
∑
k

Yk

(
∂Eek

∂pk

)
; Aei =

∑
k

Yk

(
∂Eek

∂Tik

)
; Aee =

∑
k

Yk

(
∂Eek

∂Tek

)
(18)

Bp = ξ −
∑
k

Ykξ
η
k +

∑
k

Yk

[
pηk

(
∂ξk
∂pk

)
+ T η

ik

(
∂ξk
∂Tik

)
+ T η

ek

(
∂ξk
∂Tek

)]
(19)

Bi = Ei −
∑
k

YkE
η
ik +

∑
k

Yk

[
pηk

(
∂Eik

∂pk

)
+ T η

ik

(
∂Eik

∂Tik

)
+ T η

ek

(
∂Eik

∂Tek

)]
(20)

Be = Ee −
∑
k

YkE
η
ek +

∑
k

Yk

[
pηk

(
∂Eek

∂pk

)
+ T η

ik

(
∂Eek

∂Tik

)
+ T η

ek

(
∂Eek

∂Tek

)]
(21)

The thermodynamic derivatives in Eqs. (16)–(21) must be evaluated in terms of the particular state

relations and routines available to the user. As mentioned in Sect. III, most such routines employ

the independent thermodynamic variables (ρk, Tik, Tek) rather than (pk, Tik, Tek). The thermody-

namic identities needed to evaluate the partial derivatives in Eqs. (16)–(21) in terms of derivatives

with respect to (ρk, Tik, Tek) are summarized in Sect. V.

Equations (13)–(15) are a system of three linear equations in the three unknown quantities

pη+1, T η+1
i , and T η+1

e , the solution to which is readily obtained from Cramer’s rule. To minimize
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multiplications, it is convenient to compute the minors of the matrix A at the outset and save them

for repeated use. These quantities are given by

Mpp = AiiAee − AeiAie (22)

Mip = ApiAee − AeiApe (23)

Mep = ApiAie − AiiApe (24)

Mpi = AipAee − AepAie (25)

Mii = AppAee − AepApe (26)

Mei = AppAie − AipApe (27)

Mpe = AipAei − AepAii (28)

Mie = AppAei − AepApi (29)

Mee = AppAii − AipApi (30)

According to Cramer’s rule, the solution of Eqs. (13)–(15) is then given by

pη+1 = R Dp (31)

T η+1
i = R Di (32)

T η+1
e = R De (33)

where

Dp = BpMpp −BiMip +BeMep (34)
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Di = −BpMpi +BiMii −BeMei (35)

De = BpMpe −BiMie +BeMee (36)

R = 1/(AppMpp − ApiMpi + ApeMpe) (37)

Equations (31)–(33) combine with Eqs. (10)–(12) to provide explicit expressions for ξη+1
k , Eη+1

ik ,

and Eη+1
ek , which in turn determine pη+1

k , T η+1
ik , and T η+1

ek via the individual material state relations.

Newtonian iteration schemes are notoriously vulnerable to overshoots, so limiters are some-

times necessary to ensure convergence. Experience in applying the above iteration scheme on a

variety of problems has shown that divergence is usually avoided if ξη+1
k is not allowed to differ

from ξηk by more than a factor of two. Limiters could also be applied to Eη+1
ik and Eη+1

ek , but this

has not been found necessary except when the initial guesses are very far off.

The iteration procedure is normally initialized by setting ξ0k, E
0
ik, and E0

ek equal to their

values from the previous time step. Note that there is no need to initialize p, Ti, or Te since

Eqs. (10)–(12) do not involve pη, T η
i , or T η

e . The iteration is continued until max(ϵηpk, ϵ
η
ik, ϵ

η
ek) < ϵ

for all k, where ϵ ≈ 10−4 and

ϵηpk ≡ |Yk(1− pηk/p
η)| (38)

ϵηik ≡ |Yk(1− T η
ik/T

η
i )| (39)

ϵηek ≡ |Yk(1− T η
ek/T

η
e )| (40)

To illustrate the behavior of the iteration algorithm, we applied the above procedure to a

mixture of materials commonly used in inertial confinement fusion capsules, namely Hydrogen

(H), Carbon (C), Oxygen (O), Silicon (Si) and Germanium (Ge). The mixture consists of 20% by
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mass fraction of each element (Yk = 0.2 for k = 1, ..., 5). The density, total energy and electron

energy are ρ = 100 (g/cc), E = 1015 (erg/g) and Ee = 1012 (erg/g), respectively. These conditions

correspond to a wide separation in ion and electron temperatures, which tests the robustness of

the equilibration algorithm. Starting guesses for species densities and energies are ρk = ρ, Eik =

E − Ee and Eek = Ee. The convergence of the solution method is shown in Fig. 1. It takes only

three iterations to bring the mixture into pressure and temperature equilibrium, despite the large

(factor of six) changes in species quantities.

Other tests show that the method works well at high temperatures, where thermodynamic

derivatives are smooth, but can run into trouble at low temperatures where (∂pk/∂ρk) can pass

through zero (e.g., phase changes), and Ee and its derivatives go to zero and/or become unreli-

able due to deficiencies in the electronic state relations when ionization is negligible (e.g., neutral

gases). A workaround for these situations is to put floors p0 and Ee0 under pk and Eek, such that

∂pk/∂ρk ≥ p0/ρk and ∂Eek/∂Tek ≥ Ee0/Tek. This reduces the accuracy of the method at low

temperatures, but has been found sufficient for problems with strong heating in which energies

quickly increase by several orders of magnitude .

V. THERMODYNAMIC DERIVATIVES OF THE INDIVIDUAL MATERIALS

The following thermodynamic identities can be derived by the usual straightforward but

tedious manipulations. In this section, but only herein, all subscripts k will be suppressed for

simplicity, with the understanding that the relations below apply separately to each material k in

the mixture, and the subscripts k must of course be restored before these relations may be used in

Eqs. (16)–(21). (The relations below also apply as they stand to the mixture as a whole, but are not

useful in that context because the corresponding derivatives for the mixture are simply given by
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Eqs. (53)–(55) in Sect. VI below.) In what follows, a subscript T indicates that both Ti and Te are

held constant, and it is understood that partial derivatives with respect to either Ti or Te are always

taken with the other held constant, even though this is not explicitly indicated by a subscript.

(
∂ξ

∂p

)
T

= − 1

ρ2

(
∂p

∂ρ

)−1

T

(41)

(
∂Ei

∂p

)
T

=

(
∂Ei

∂ρ

)
T

(
∂p

∂ρ

)−1

T

(42)

(
∂Ee

∂p

)
T

=

(
∂Ee

∂ρ

)
T

(
∂p

∂ρ

)−1

T

(43)

(
∂ξ

∂Ti

)
p

=
1

ρ2

(
∂p

∂Ti

)
ρ

(
∂p

∂ρ

)−1

T

(44)

(
∂Ei

∂Ti

)
p

=

(
∂Ei

∂Ti

)
ρ

−
(
∂Ei

∂ρ

)
T

(
∂p

∂Ti

)
ρ

(
∂p

∂ρ

)−1

T

(45)

(
∂Ee

∂Ti

)
p

=

(
∂Ee

∂Ti

)
ρ

−
(
∂Ee

∂ρ

)
T

(
∂p

∂Ti

)
ρ

(
∂p

∂ρ

)−1

T

(46)

(
∂ξ

∂Te

)
p

=
1

ρ2

(
∂p

∂Te

)
ρ

(
∂p

∂ρ

)−1

T

(47)

(
∂Ei

∂Te

)
p

=

(
∂Ei

∂Te

)
ρ

−
(
∂Ei

∂ρ

)
T

(
∂p

∂Te

)
ρ

(
∂p

∂ρ

)−1

T

(48)

(
∂Ee

∂Te

)
p

=

(
∂Ee

∂Te

)
ρ

−
(
∂Ee

∂ρ

)
T

(
∂p

∂Te

)
ρ

(
∂p

∂ρ

)−1

T

(49)

If Ee is independent of Ti and Ei is independent of Te at constant ρ, which is normally the case for

the individual materials k, then the first term in the right members of Eqs. (46) and (48) vanishes

and may be omitted. Even when these conditions are satisfied, however, the corresponding terms

do not in general vanish for the mixture as a whole.

VI. THERMODYNAMIC DERIVATIVES OF THE MIXTURE

The iteration scheme determines the mixture state relations for the dependent thermody-

13



namic variables (p, Ti, Te) as functions of the independent thermodynamic variables (ρ,Ei, Ee).

To obtain the mixture specific heats, and for various other purposes, it is necessary to evaluate par-

tial derivatives of the mixture state relations. In this section we derive the thermodynamic relations

needed to evaluate the partial derivatives of (ρ,Ei, Ee) with respect to (p, Ti, Te), as well as the

derivatives of (p, Ei, Ee) with respect to (ρ, Ti, Te).

Partial derivatives of the state relations for the mixture may be obtained by taking the differ-

entials of the constraint conditions of Eqs. (1)–(3) and the equilibration conditions of Eqs. (4)–(6)

with respect to (p, Ti, Te) and combining the results. We thereby obtain

dξ = Appdp+ ApidTi + ApedTe (50)

dEi = Aipdp+ AiidTi + AiedTe (51)

dEe = Aepdp+ AeidTi + AeedTe (52)

where the quantities Aαβ are the final converged values of the matrix elements defined in Eqs. (16)–

(18). It follows that

(
∂ξ

∂p

)
T

= App ;

(
∂ξ

∂Ti

)
p

= Api ;

(
∂ξ

∂Te

)
p

= Ape (53)(
∂Ei

∂p

)
T

= Aip ;

(
∂Ei

∂Ti

)
p

= Aii ;

(
∂Ei

∂Te

)
p

= Aie (54)(
∂Ee

∂p

)
T

= Aep ;

(
∂Ee

∂Ti

)
p

= Aei ;

(
∂Ee

∂Te

)
p

= Aee (55)

These relations may be transformed into expressions for the derivatives of (p, Ei, Ee) with respect
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to (ρ, Ti, Te) by means of further straightforward but tedious manipulations. The net results are

(
∂p

∂ρ

)
T

= − 1

ρ2App

;

(
∂p

∂Ti

)
ρ

= − Api

App

;

(
∂p

∂Te

)
ρ

= − Ape

App

(56)(
∂Ei

∂ρ

)
T

= − Aip

ρ2App

;

(
∂Ei

∂Ti

)
ρ

= Aii −
AipApi

App

;

(
∂Ei

∂Te

)
ρ

= Aie −
AipApe

App

(57)(
∂Ee

∂ρ

)
T

= − Aep

ρ2App

;

(
∂Ee

∂Ti

)
ρ

= Aei −
AepApi

App

;

(
∂Ee

∂Te

)
ρ

= Aee −
AepApe

App

(58)

VII. THE SOUND SPEED

In this section we derive the sound speed of the mixture in the limit of slow energy ex-

change between heavy particles and electrons. The usual thermodynamic expressions for sound

speed are not directly applicable in two-temperature plasmas, where there are three rather than two

independent thermodynamic variables. In this situation, the simplest way to proceed is to go back

to basics and directly determine the sound speed by linearizing the two-temperature hydrodynamic

equations about a uniform steady state. We shall restrict attention to the case in which the rate

of energy exchange between heavy particles and electrons is negligible. Under these conditions,

the relation between acoustic variations in pressure and density can be inferred from the adiabatic

thermodynamic relations

dp = Kρdρ+KidEi +KedEe (59)

dEi =
pi
ρ2

dρ (60)

dEe =
pe
ρ2

dρ (61)
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where pe =
∑

k vkpek is the partial pressure of the free electrons, pi = p− pe, and

Kρ =

(
∂p

∂ρ

)
Ei,Ee

(62)

Ki =

(
∂p

∂Ei

)
ρ,Ee

(63)

Ke =

(
∂p

∂Ee

)
ρ,Ei

(64)

The electron pressures pek are determined as functions of (ξk, Te) by the thermodynamic state re-

lations of the individual materials k. In contrast to the total pressures pk, the electron pressures pek

are not equilibrated, so they will in general be unequal and must be volume-weighted as indicated

above to obtain pe for the mixture [1]. Combining Eqs. (59)–(61), we obtain

dp = c2dρ (65)

where

ρ2c2 = ρ2Kρ + piKi + peKe (66)

The linearized hydrodynamic equations in one spatial dimension x reduce to

∂ρ

∂t
= − ρ

∂u

∂x
(67)

ρ
∂u

∂t
= − ∂p

∂x
(68)

where u is the fluid velocity. Combining Eqs. (65), (67), and (68), we obtain

∂2ρ

∂t2
= c2

∂2ρ

∂x2
(69)
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which is just the familiar wave equation in one dimension, thereby confirming that c as determined

by Eq. (66) is indeed the sound speed.

The derivatives Kρ, Ki, and Ke are simply related to quantities that have already been eval-

uated during the iteration. Equations (50)–(52) are a linear system of the same form as Eqs. (13)–

(15), with (Bp, Bi, Be) replaced by (dξ, dEi, dEe) and (p, Ti, Te)
η+1 replaced by (dp, dTi, dTe). It

then follows from Eqs. (31) and (34) that

dp = R(Mppdξ −MipdEi +MepdEe) (70)

Comparison with Eq. (59) shows that

ρ2Kρ = −RMpp (71)

Ki = −RMip (72)

Ke = RMep (73)

which combine with Eq. (66) to yield

ρ2c2 = R(−Mpp − piMip + peMep) (74)

VIII. SUMMARY

We have presented an iterative algorithm for determining pressure, ion temperature and

electron temperature given the density, total energy and electron energy of a plasma mixture. By

solving a 3N + 3 system of equations, all species are brought into pressure and temperature equi-
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librium, with ions equilibrated separately from electrons. The algorithm has been applied to a

variety of inertial confinement fusion problems and found to converge rapidly, provided the elec-

tron temperature is sufficiently high for significant ionization. The sound speed and specific heats

of the plasma mixture are easily computed after the equilibration procedure.
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Figure 1: Convergence of species densities, total pressures, ion temperatures and electron temper-
atures during the course of Newton-Raphson iteration.
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